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A study is made of the radiation resistance of long cylindrical shells
in contact with an ideal compressible acoustic medium of infinite
extent. The problem is formulated mathematically in terms of two
descriptive differential equations: one for the cylindrical shell and
the other for the acoustic medium. The solution to these eguations is
obtained by imposition of a boundary condition establishing velocity
compatibility at the shell-fluid interface and by the requirement that
the results satisfy the radiation condition in the limit at large
distances from the surface of the shell. For convenience and general-
ity, the results are obtained in terms of dimensionless series that
are numerically evaluated for realistic ranges of the dimensionless
parameters involved.
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LIST OF SYMBOLS

a mean-radius of cylinder Rrad radiation resistance
C = E/[p (1-\)2)] t time
L 7 s
<, speed of sound in the acoustic medium u_ radial fluid particle velocity
D plate stiffness, Eh3/[12(1_v2)] w radial velocity of shell surface
E Young's Modulus wr radiated power
h thickness of shell o dimensionless axial coordinate
i 0" = 1 € & = 1)/al‘ms
kr radial wave number v Poisson's ratio
m integer po ambient density of the acoustic medium
m mass cf shell material per unit of arez DS density of shell material
n integer 4 acoustic velocity potential
P acoustic pressure w frequency of forcing function
q applied load on cylinder surface per wr ring frequency
unit of area
w critical frequency
r radial coordinate in cylindrical <

coordinate system
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INTRODUCTION

The radiation resistance of cylindrical
shells has not been studied in either great
depth or with broad generality. 1In fact, the
need to do so in relationship to acoustics
problems has only recently materialized in con-
junction with the development of statistical
energy methods of vibration analysis [1, 2, 3,
4]. Morse [5], Junger [6, 7, 8], Bleich and
Baron [9], Greenspon [10] and others have in-
vestigated the problem of cylindrical shell-
acoustic media vibrational interaction from
numerous points of view, but little work has
been directed toward the determination of the
radiation resistance. Recent work related to
the radiation resistance of cylindrical shells
has been done in terms of modal configuration
studies [11] and numerical techniques [12, 13].
In contrast, this study employs a mathematical
model consisting of simultaneous differential
equations--one describing the motion of the
shell and the other, the motion of the fluid.
The solution of these equations is obtained by
classical separation.of-.variables techniques
subject to a velocity compatibility boundary
condition at the shell-fluid interface and to
the radiation condition at large-distances from
the shell surface. The results are utilized to
compute the power radiated and the radiation
resistance,

ANALYTICAL DEVELOPMENT

contact with an ideal compressible acoustic
medium is examined. The descriptive differen-
tial equation for the shell is developed based
on hypotheses that the length of the shell is
large compared to the radius; the shell material
is isotropic, elastic and obeys the thin shell
equations of deformation; and the surface of

the shell assumes a vibrational mode shape
which can be mathematically described in terms
of the axial coordinate alone.

Beginning with the general thin-shell
differential equations [14] relating displace-
ments to the like components of applied forces,
the descriptive equation for the shell is
developed by first noting the mathematical
implication of the mode shape assumption; by
combining the resulting equations into one
equation in the radial displacement, w; and by
considering the radial surface load to be
composed of three components. The first
component is the inertia or d'Alembert force;
the second, the acoustic resisting force; and
the third, the applied surface load, q, which
is due to a source within the cylinder and will
be considered to be a function of both time, t
and the axial coordinate, ¢« The force due to
the presence of the acoustic medium will be
expressed in terms of an acoustic velocity
potential, ¢. The result is

)
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Equation (1) is an equation of motion for the
shell in terms of the radial displacement, w,
alone. This equation will be employed to com-
pletely describe the cylindrical shell for
axisymmetric mode shapes, and will be solved
simultaneously with the wave equation to obtain
the desired expression for the radiation re-
sistance.

The descriptive equation for the acoustic
medium is the classical wave equation which in
terms of the velocity potential, ¢, is
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At the shell-fluid interface, the boundary
condition will represent the constraint that the
radial velocity of the shell surface is equal
to the radial velocity of the fluid particles
in contact with the shell, and is expressed
mathematically as

g"ti (a,t) = %i— (r’o{"t)_!r=a . 3)

At large distances from the surface of the
shell as r approaches infinity, the physical
implications of this boundary condition are
that no reflections or other physical disturb-
ances occur at the far boundaries of the acous-
tic medium, This constraint is termed the
radiation condition and assures that the solu-
tions to the wave equation represent outgoing
waves. Mathematically,

i

. o
lim J‘r‘(gg - ik 0] =0 for k_ >0, (4a)
r—-00 .

and

lim J‘f‘(%i:l - kol =0 fork =ik >0. (4b)
I'~00

The solutions of equation (2) subject to
the boundary condition equations (4) are

s(r,o,t) = io %A sin®2 o 1k ry P (5a)
n L 0 r
n=1
for kr > 0, and
. . _nma 1) . L iwmt
o(r,o,t) =iw I A sin—o— o Hé )(1Err)elw (5b)
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for Er =ik > 0. The velocity potential is

then determined except for the constant An.

Equation (1) and the boundary condition equa-
tion (3) are the information required for its
determination. Expanding the applied load on
the surface of the cylinder as

. a iwt
qlo,t) = ElQnsa.n-ri]j— o e® ; (6)
n=

and uvtilizing equation (3) yields an equation
which can be simplified to the form
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However Hél)(x) = Jm(x) +~iYm(x), consequently

substitution of this expression into equation
(7) yields an equation which can be employed to
determine An as is indicated below.
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A = z ,
n Po 2 2
ms{[krjl(kra).+ﬁg Jo(kra)]w 'Xnkrjl<kra)}
)
where
2 _ e2[(rma)4 + EhaZ] 9
Xp T B D :
Defining
X2
2 e
Yo © o J (k.a) ° (10
1+ 22
mS erl(kra)
and rewriting equation (8) produces
2
Q¥
An = an

7,2 2
mskrjl(gra)xn(UJ 'vn)

Consequently, the velocity potential is

2 §)) iwt
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(12)
for k_ > 0, and for k_ = ik_ > 0, similar 1 L
. oo wo=[%2 do
manipulation yields e S g FmeIda.
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o(r,q, t) 0. (13)
At this point, the édquations for the
velocity potential will be written in terms of
a non-dimensional series to facilitate numeri.

cal evaluation, Defining
) " Vv a
=W = R -
= i) £ = - and X, = kra ; (14)
o o
yields
iwQ 3 .
_ o ,a (1) it
o(r,0,t) = pey (“’i‘) Z Sn(O/) HO (krr) e ; (13
s ¢ n=1
o
for k_ >0 and ¢ =0 for k_ = ik_ > 0 with
T T r
Q v 2
2 (_B_) sin nra 04
W Xy L
5 () = (16)

[ﬂz-ézl ® 35 (x)

The radiation resistance will now be
calculated. At large distances from the surface
of the cylindrical shell, the acoustic pressure
Q0
5t and
that the Hankel function can be asymptotically
represented in terms of an exponential function.
The acoustic pressure in the far.field is thus

will be determined by noting that p = o

2 N ™
- t + -
) wop Q, <a3) 5 s (@ 3 e1(w krr ZO
P m 2 n Tk r )
s ¢ n=1 r

o
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The radial fluid particle velocity is obtained
by noting that at large distances from the
surface of the shell, the cylindrical wave

front behavior approaches that of a plane wave
front in any small increment of polar angle,
Consequently the plane wave relationship between
p and u_ will be employed: u = p/poco. The

product of the real part of the acoustic pres-
sure and the real part of the fluid velocity
averaged over time is the intensity or radiated
power per unit of acoustic field area,

P wAQ 6
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é Integrating and making use of orthogonality and
gives
. v C 4
, 2_, m 2., L2, (mm) hi2.a2 ., 2
) _%n_(:'.ﬂ)z 3 "(E) [(E;) [—Tf—“(t) (I_.:) +(1-v9) 1],
poQoa L wa, & Qo *m 2 1 2 . (24)
W sem—m— (= Z[— ] 1. .
r mzc S mel 2(ﬂ2-§2) erl(Xr)
s 0 r 5 Consequently all quantities in equation (21) are
(19) now represented in terms of the forcing fre-

quency parameter, T; the shell geometry
The mean-square surface velocity of the parametgrs, a/L, and h/L5 and the.material
vibrating surface is now required, and will be properties, po/ps, CL/co’ and v with Qm/Qo =1/n.
calculated from ¢ based on an equation similar
to equation (3). The surface radial velocity,
u , is determined. The real part of this
quantity is squared to yield Ug, a quantity

The numerical analysis, per se, is a
parameter study of the problem in terms of the
previously mentioned parameters: the ranges of
values for the shell geometry parameters and
which is averaged over time and space to produce for 1 are approximately

the mean square surface velocity, Uz.

102 <n<10°
Y -3
% w2 ) 107 <a/L <1,
Ve ot g2 g le Ka g2y T, ‘and
e (@ T e _
s o o m=l M -§ J1<Xr) _5 1
1077 < h/L 1077 .
% (20)
i C 3eos
‘% The radiation resistance per characteristic . A,dlgltal coTputer.was.emp}oyed Fo sum the
ﬁ length of the shell is thus R - 2w /U or dimensionless series which is finite for k_ > 0.
§ rad T . c . . -
| The program incorporates this information and
ﬁ N terminates summation for any value of n greater
4 Qm ( m32 than ﬂ/(ﬂa/L). The program also terminates
% ~; Z; 2 1 suwnation in the case of couvergence to & stable
g = [ 5 > 15 ] value for each series.
- m=l N -§ x_J (x )
o wa, 2 r'1r . . .
0 R =4p ¢ L(—) ’ The numerical results are shown in Figures
- rad o0 v
. (] “m QJE 2 2 1 through 4. Figure 1 presents the dimension-
; Qo X, 2 Yl(xr) less Rrad for small 7: the acoustic medium is
z . 1 +
m=1[ ni _gl 171 Jz(x )] air. Because this results peaks at each
1My resonance of the shell, an averaged or smoothed
curve would be more useful in octave band
(21) analysis work. Hence the computer is employed
to average the theoretical curve to obtain the
for kr > 0 and for Er > 0, Rrad = 0. averaged curve also shown in Figure 1, Figure 2

depicts the same information for an acoustic
. ‘medium of water instead of air. Figure 3 is
NUMERT CAL EVALUATIdN essentially a compérison'of the result§ for )
small T for acoustic environments of either air
or water. Finally in Figure 4, the averaged
radiation resistance for a shell in contact
with water is indicated for a wide range of
TN values,

N

Numerical evaluation of the expression for
the radiation resistance can be accomplished by
writing Xy g, and vn/xn as dependent variables,

functions of the independent variable 1) and

other basic parameters which are related to the :

geometry of the shell and the physical proper- DISCUSSION AND CONCLUSIONS

ties of the shell material and fluid. Thus

' The results exhibit excellent agreement
with the basic characteristics of previous work

xo= [ﬂz - (Bgsz]% , (22) on the radiation resistance of short ecylindrical
shells [11]. Although the work reviewed in this
v report is theoretically applicable to long or
(_202 - 1 (23) mathematically infinite cylindrical shells,
X 0 J (x) ’ Figure 4, which indicates the averaged behavior
1+ (—2)(39(59'1 °r of R_. , over a wide range of dimensionless
Py L L erl(xri rad - R

frequency values, shows quite clearly the
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characteristics of previously published experi-
~ontal data with regard to.the two peaks in the
1 ow- to widdle-frequency values and the asymp-
totic approach to the radiation resistance of a
flat plate of equal area for large values of
the dimensionless frequency parameter, 7. The
two peaks are identified as the ring frequency,

s . the frequency at which the longitudinal
r

wave length in the cylinder material is equal
‘o its circumference, and the critical fre-
quency, wg’ the frequency at which the

flexural-wave speed in a flat plate of equiva-
lent thickness is equal to the speed of sound
in the surrounding acoustic medium, respective-
ly. For large values of T, the results as
indicated in Figure 4 oscillate between the
dotted curve which represents the upper bound
and the dashed curve which represents the
asymptotic limit for values of the radiation

resistance of the cylinder. _

Due to the substantial differences in the
shell and acoustic environment in the two
cases--the theoretical work reported here
applying to a long cylindrical shell in con-
tact with an unbounded ideal fluid and the
experimental work of Manning and Maidanik, for
example, applying to a short, flanged cylinder
in contact with a reverberant airspace--it is
felt that the results of this work show good
agreement with experimental studies. The
decaying oscillation of the radiation resis-
tance as 1) becomes large is an effect perhaps
due to the combined influence of formulating
the problem in terms of axisymmetric mode
shapes ol the cylinder znd the anechoic
acoustic enviromment. More study, both
theoretical and experimental, is needed to
clari fy this point.

This work was supported by NASA, Langley
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DISCUSSION
Mr. Chaump (General Electric Co.): Was
; your source inside the cylinder a line source
or a spherical source?

Mr. Runkle: It could be compared to a
propagating wave.

Mr. Chaump: You were looking at longi-
tudinal waves instead of radially outward
waves ? 1

Mr. Runkle: Yes.
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